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Signaling is critical to biological function across levels of organization, including communication 

within or among cells, tissues, organisms, populations, and different species within a community. 

We propose that identifying fundamental principles of signaling that underlie information transfer 

and response across biological scales will enable critical insights into the origins of biological 

diversity and organizational complexity. While a rich complexity of signaling processes has been 

identified, we lack a unified and integrated framework for investigating/understanding signaling 

across levels of organization and signaling modalities. This is an  

impediment to uncovering common rules. In particular, there 

seems to be a break in considering signaling and signal 

propagation at levels within an organism vs. levels between 

organisms.            

 

Signals provide information about properties that change 

over space (such as chemical gradients) and/or time. On a 

molecular level, these may be driven by protein interactions, 

or interactions of proteins with small molecular ligands. As 

molecules become organized into cells and increasingly 

compartmentalized into tissues, organs, and systems, 

endocrine, paracrine and neural communication allow 

signals to travel over larger distances to affect specialized 

targets (e.g., hormonal target tissues) and enable rapid 

responses. In some cases, specialized mechanisms have 

developed to discriminate, amplify and propagate signals. 

Organisms perceive signals from the environment through 

sensory systems which, once integrated, produce cohesive 

and wide-ranging effects. Signals may be transmitted within 

or between species through chemicals (e.g., pheromones or 

kairomones), sounds, visual signals, or other modalities. The 

underlying mechanisms enabling signaling within microbial 

communities and between hosts and their associated 

microbiome are only beginning to be elucidated. As such, this 

represents a unique opportunity to further define novel signaling events across biological scales. 

       

 

  Figure 1. Modes of signaling 
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On the general rules of signaling and information transfer: 

The evolution of signaling mechanisms occurs within a common set of constraints, such as rates 

of diffusion, speed of sound propagation, and light attenuation. These constraints define the limits 

of energy “space” under which the evolution of signaling systems takes place. Thus, they provide 

the context in which the diversity of mechanisms to transmit and detect information may arise. 

Indeed, the transition from simple diffusive signaling (intrinsically limiting in terms of scale and 

kinetics) toward true propagation (Figure 1) represents a key transition at multiple scales in the 

evolution of different life forms. Considerations of the potential effects of gradients, affinity, 

specificity, inhibition and feedback further impact signal complexity. It is worth asking whether the 

development of chemical “cascades” (as in GPCR signaling) common in most eukaryotic cells 

has mechanistic commonalities with organismic-level signaling, as in alarm calling in many 

vertebrates, quorum sensing in bacteria (chemical/external), or cold acclimation in vertebrates, 

invertebrates and plants (via environmental cues).  

 

Signaling incurs costs to energy and fitness.  Biosynthetic enzymes are costly to synthesize and 

process (glycosylation, hydroxylation, etc), require co-factors, and are sensitive to pH and 

temperature. Steroids and prostaglandins require several biosynthetic steps and are relatively 

costly to produce. In contrast, amino acids such as glutamate and GABA are relatively simple and 

energetically inexpensive to produce. Energetic costs can also be associated with detecting or 

amplifying signals (e.g., through molecular receptors or sensory structures). On an ecological 

level, signals may be shaped by trade-offs between maximizing the likelihood of reproduction at 

the potential cost of revealing their presence to predators and/or competitors. Thus, there can be 

selective pressure both to specifically target signals to the desired recipients and avoid detection 

by predators and competitors. For example, the dramatic plumage of male peacocks provides a 

strong visual signal to potential mates but provides less visual contrast to common predators with 

dichromatic vision. Signals can also be mimicked, masked or otherwise disrupted, creating a 

selective pressure toward improving mechanisms for discriminating meaningful information from 

noise and false signals (Box 2). 

 

Ultimately, we aim to gain an integrative understanding of the “rules” that govern how signals are 

transmitted and detected to convey meaningful information across scales of biological 

organization. For example, can quantitative models or other theories developed at one scale can 

be applied more broadly across scales? How might models and terminology be expanded or 

modified to be broadly applicable? Finally, while this vision paper does not explicitly consider 

transfer of genetic or epigenetic information across generations, there may be something to be 

learned from these types of information transfer as a type of signal that propagates within 

organisms and across generations.   
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Box 1: Additional examples of signaling   

● endocrine and nervous signaling within an organism 

● tissue-level angiogenesis/tumorigenesis  

● hydration state/osmotic pressure (cell volume) 

● pressure at organismal (baroreceptors) and molecular levels (activation volumes) 

● membrane tension 

● immune surveillance 

● pathophysiological conditions (pain, anaphylaxis)  

● O2/pH/CO2 (chemoreceptors) at molecular and organismal levels   

● physical properties of the environment: temperature; light intensity and spectral quality 

(photoreception) 

● microbial quorum sensing  

● microbiome-host signals 

● microbial biofilms as settlement cues for invertebrates 

 

Box 2: Some consequences of signal disruption  

● autoimmunity  
○ Plant autoimmunity resulting from immune receptors mis-activating) 
○ Multiple sclerosis and other autoimmune neurological diseases 

● disruption of mammalian reproduction and other steroid signalling by phytoestrogens 
● environmental noise masking acoustic communication 
● cell growth signaling disruption leading to cancer 

 

 

What’s the potential impact? 

We expect that addressing this question will reveal rules of life that span levels of biological 

organization, or reveal where such rules are absent in the domain of signaling. Work on this 

question could provide new perspectives and frameworks to study signaling and signal processing 

in different systems. An understanding of ‘rules of signaling’ could be used to gain insights into a 

range of topics including: evolutionary processes, biological innovation, the development of 

complex and highly organized structures (e.g., central nervous system), the capacity of organisms 

to respond to a changing environment, species diversity, community structure and dynamics.  

 

Why now? 

We believe this is a tractable question to catalyze “reintegration” across biology and beyond. 

Newly available tools can enable advances in understanding. As one example, high-throughput 

sequencing has dramatically improved our knowledge of the composition of microbial 

communities. Thus, by coupling this genetic information with sensitive and high resolution 

methods of chemical sensing, we can learn more about signaling between microbiomes and their 

hosts.  

 

State-of-the-art technologies and applications 
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Cost-effective methods for comparing biological responses to a stimulus, stressor, disturbance 

etc. that results in signal generation and transmission are now available at multiple levels of 

biological organization (transcriptomics, proteomics, metabolomics, phosphoproteomics, etc). 

High-throughput screening approaches allow rapid identification of protein-protein and protein-

ligand interactions. Improvements in remote sensing technologies have allowed for real-time 

biologging and measurement of a limited set of physiological parameters and animal behaviors 

within the context of their environment.  

 

However, it is expected that methodological advances will be necessary to fill “gaps” in accessible 

scales of measurement and observation. For example, new instrumentation may be necessary to 

measure/quantify signals at scales or modalities that are currently poorly understood. Although a 

great deal of progress has been made in the development of experimental techniques across 

different biological scales (e.g., genomics, imaging, ecosystem monitoring), we are mindful of a 

number of gaps still present when transitioning between scales. For instance, integration of 

imaging/structural insights at the molecular, cellular, organismal and community scales continues 

to be challenged by the existing gaps between each scale level. This is also the case when 

considering multiple time scales. Real-time monitoring of signaling and integration with 

corresponding biochemical, physical, physiological and/or behavioral responses is not yet 

feasible for all organisms. Strategies of integrating multiple “omics” approaches across scales 

that require computational methods and big data management have not yet fully emerged. 

Enhanced computational modeling capacities and emerging AI capabilities may enable more 

comprehensive integration between organizational levels. 

  

Challenges and opportunities toward re-integrating biology 

Addressing this question will require integration across biological disciplines, including 

biochemistry, biophysics, cell and molecular biology, physiology, behavior, and ecology. Thus, it 

provides an excellent question around which to focus re-integration of research. This research 

question will also require integration with other fields including physics, chemistry, mathematics 

and computer science, and necessitate truly integrative work across levels of organization and 

space/time scales. To meet these challenges, support and potentially training for this collaborative 

and integrative science will be critical.  

 

Intended audience of the paper 

Pursuing the answers to the central question posed in this vision paper, “How do rules for 

signaling generate or constrain biological organization and diversity?” is critical for understanding 

the Rules of Life, and therefore, is central to biological research at every level of biological 

organization/scale.  Thus, we believe that there will be broad interest in and support of this 

proposal from biologists within every biological sub-discipline.   

 

 


